Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects
نویسندگان
چکیده
The direct conversion of light into work allows the driving of micron-sized motors in a contactless, controllable and continuous way. Light-to-work conversion can involve either direct transfer of optical momentum or indirect opto-thermal effects. Both strategies have been implemented using different coupling mechanisms. However, the resulting efficiencies are always very low, and high power densities, generally obtained by focused laser beams, are required. Here we show that microfabricated gears, sitting on a liquid-air interface, can efficiently convert absorbed light into rotational motion through a thermocapillary effect. We demonstrate rotation rates up to 300 r.p.m. under wide-field illumination with incoherent light. Our analysis shows that thermocapillary propulsion is one of the strongest mechanisms for light actuation at the micron- and nanoscale.
منابع مشابه
Visible-light controlled catalytic Cu2O-Au micromotors.
Visible light driven Cu2O-Au micromotors exhibit rapid on/off switching and speed control. Electrochemical measurements confirm that the light-induced movement of the Cu2O-Au micromotors involves a self-electrophoresis mechanism modulated by the photoconductivity of Cu2O. This study extends the utilization of the electromagnetic spectrum for micro/nanomotors into the visible range.
متن کاملOne-step fabrication of multifunctional micromotors.
Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsificati...
متن کاملPretreatment quality control of single isocenter half- beam treatment planning technique using an amorphous silicon electronic portal-imaging device (EPID)
Introduction: Electronic portal imaging devices (EPIDs) are fundamentally used for instantaneous verification of the patient set‐up, block shape, and leaf positions during radiation therapy. In radiotherapy, situations arise in which an inclined PTV must be treated mutually with adjacent nodal regions. This methodology is most widely used for matching tangential/lateral breas...
متن کاملImproving the Thermal Characteristics of Semiconductor Lasers Using a New Asymmetric Waveguide Structure
Self-heating leads to a temperature rise of the laser diode and limits the output power and efficiency due to increased loss and decreased differential gain. To control device self-heating, it is required to design the laser structure with a low optical loss, while the heat flux must spread out of the device efficiently. In this study, a new asymmetric waveguide design is proposed and th...
متن کاملLight controlled 3D micromotors powered by bacteria
Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The s...
متن کامل